skip to main content


Search for: All records

Creators/Authors contains: "Henzinger, Monika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guruswami, Venkatesan (Ed.)
    Algorithms with predictions is a new research direction that leverages machine learned predictions for algorithm design. So far a plethora of recent works have incorporated predictions to improve on worst-case bounds for online problems. In this paper, we initiate the study of complexity of dynamic data structures with predictions, including dynamic graph algorithms. Unlike online algorithms, the goal in dynamic data structures is to maintain the solution efficiently with every update. We investigate three natural models of prediction: (1) δ-accurate predictions where each predicted request matches the true request with probability δ, (2) list-accurate predictions where a true request comes from a list of possible requests, and (3) bounded delay predictions where the true requests are a permutation of the predicted requests. We give general reductions among the prediction models, showing that bounded delay is the strongest prediction model, followed by list-accurate, and δ-accurate. Further, we identify two broad problem classes based on lower bounds due to the Online Matrix Vector (OMv) conjecture. Specifically, we show that locally correctable dynamic problems have strong conditional lower bounds for list-accurate predictions that are equivalent to the non-prediction setting, unless list-accurate predictions are perfect. Moreover, we show that locally reducible dynamic problems have time complexity that degrades gracefully with the quality of bounded delay predictions. We categorize problems with known OMv lower bounds accordingly and give several upper bounds in the delay model that show that our lower bounds are almost tight. We note that concurrent work by v.d.Brand et al. [SODA '24] and Liu and Srinivas [arXiv:2307.08890] independently study dynamic graph algorithms with predictions, but their work is mostly focused on showing upper bounds. 
    more » « less
  2. Tauman Kalai, Yael (Ed.)
    Over the last two decades, a significant line of work in theoretical algorithms has made progress in solving linear systems of the form 𝐋𝐱 = 𝐛, where 𝐋 is the Laplacian matrix of a weighted graph with weights w(i,j) > 0 on the edges. The solution 𝐱 of the linear system can be interpreted as the potentials of an electrical flow in which the resistance on edge (i,j) is 1/w(i,j). Kelner, Orrechia, Sidford, and Zhu [Kelner et al., 2013] give a combinatorial, near-linear time algorithm that maintains the Kirchoff Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles (cycle toggling). In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential Law, and gradually enforces the Kirchoff Current Law by cut toggling: each iteration updates all potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that this dual algorithm also runs in a near-linear number of iterations. We show, however, that if we abstract cut toggling as a natural data structure problem, this problem can be reduced to the online vector-matrix-vector problem (OMv), which has been conjectured to be difficult for dynamic algorithms [Henzinger et al., 2015]. The conjecture implies that the data structure does not have an O(n^{1-ε}) time algorithm for any ε > 0, and thus a straightforward implementation of the cut-toggling algorithm requires essentially linear time per iteration. To circumvent the lower bound, we batch update steps, and perform them simultaneously instead of sequentially. An appropriate choice of batching leads to an Õ(m^{1.5}) time cut-toggling algorithm for solving Laplacian systems. Furthermore, we show that if we sparsify the graph and call our algorithm recursively on the Laplacian system implied by batching and sparsifying, we can reduce the running time to O(m^{1 + ε}) for any ε > 0. Thus, the dual cut-toggling algorithm can achieve (almost) the same running time as its primal cycle-toggling counterpart. 
    more » « less
  3. Statistics of small subgraph counts such as triangles, four-cycles, and s-t paths of short lengths reveal important structural properties of the underlying graph. These problems have been widely studied in social network analysis. In most relevant applications, the graphs are not only massive but also change dynamically over time. Most of these problems become hard in the dynamic setting when considering the worst case. In this paper, we ask whether the question of small subgraph counting over dynamic graphs is hard also in the average case. We consider the simplest possible average case model where the updates follow an Erdős-Rényi graph: each update selects a pair of vertices (u, v) uniformly at random and flips the existence of the edge (u, v). We develop new lower bounds and matching algorithms in this model for counting four-cycles, counting triangles through a specified point s, or a random queried point, and st paths of length 3, 4 and 5. Our results indicate while computing st paths of length 3, and 4 are easy in the average case with O(1) update time (note that they are hard in the worst case), it becomes hard when considering st paths of length 5. We introduce new techniques which allow us to get average-case hardness for these graph problems from the worst-case hardness of the Online Matrix vector problem (OMv). Our techniques rely on recent advances in fine-grained average-case complexity. Our techniques advance this literature, giving the ability to prove new lower bounds on average-case dynamic algorithms. Read More: https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.23 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    We present a general framework of designing efficient dynamic approximate algorithms for optimization on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1) A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in $\tilde{O}(n^{2/3})$ amortized time against an oblivious adversary, and $\tilde{O}(m^{3/4})$ time against an adaptive adversary. (2) An incremental data structure that maintains $O(1)$-approximate shortest path in $n^{o(1)}$ time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in $\tilde{O}(n^{2/3+o(1)})$ amortized time per operation. (3) A fully-dynamic algorithm that approximates all-pair effective resistance up to an $(1+\eps)$ factor in $\tilde{O}(n^{2/3+o(1)} \epsilon^{-O(1)})$ amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The $O(1)$-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM `05]. Result (3) is obtained by invoking the random-walk based spectral vertex sparsifier by [Durfee et al. STOC `19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy. 
    more » « less